Naval Research Laboratory

Washington, DC 20375-5320

JaMmEes P. HAUSER

Communications Systems Branch
Information Technology Division

NRL/MR/5521--95-7792

Voice Management and Multiplexing Protocols
Developed for the Data and Voice Integration
Advanced Technology Demonstration

NI L E'
NOY 2 7. 1995

November 13, 1995

19951100 134

Approved for public release; distribution unlimited.

DTIC QUALITY INSPECTED 8

REPORT DOCUMENTATION PAGE B Ao o188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
Qsthering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Heasdquarters Services, Directorate for information Operations and Reports, 1216 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Manasgement and Budget. Paperwork Reduction Project (0704-0188), Washington, DC 20603.

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

November 13, 1995

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
Voice Management and Multiplexing Protocols Developed for the Data and Voice Integration PE-0603792N
Advanced Technology Demonstration 3995WXES8011

6. AUTHOR(S)

James P. Hauser

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER
Naval Research Laboratory '
Washington, DC 20375-5320 Accesion For NRL/MR/5521-95-7792
NTIS CRA&I z&
el VA A B
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) | — '~ ' " = 10. SPONSORING/MONITORING
Unannoupced] AGENCY REPORT NUMBER
Space and Naval Warfare System Command Justification
Washington, DC 20375-5100
By]
11. SUPPLEMENTARY NOTES Distribution |
Availability Codes
12a. DISTRIBUTION/AVAILABILITY STATEMENT . Avalr ald for 12b. DISTRIBUTION CODE
Dist Special

Approved for public release; distribution unlimited.

ol

13. ABSTRACT (Maximum 200 words}

The Data and Voice Integration ATD is a four year program managed by the Naval Research Laboratory (NRL) with a goal of
demonstrating integrated communication services using low bandwidth, tactical communication channels. At present, Phases I and II
of a three phase demonstration have been completed. Phase I integrated real-time voice and non-real-time data services over a single
link, low capacity, tactical circuit. Phase Il demonstrated these services over a tactical broadcast network. Phase III will demonstrate
data/voice integration with internetworking and multicast routing capabilities.

This report focuses on two of the major areas of development critical to the success of this ATD. The first area is the
development of voice management protocols for half and full duplex operation. The second is the development of a Data/Voice
Integrator (DVI). The DVI design includes a Subnetwork Provider Interface (SNPI), an interface to a Red Link Controller (RLC),
queue management, a multiplexing scheme, and a software design. The multiplexing protocol creates a unique form of "link-
sharing,” e.i., the ability to dynamically divert bandwidth that is reserved but not currently being used to support other services.

14. SUBJECT TERMS 15. NUMBER OF PAGES

54
Data/voice integration Link-sharing

Integrated services 16. PRICE CODE
Voice management protocols

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL
NSN 7540-01-280-5500 Standerd Form 298 (Rev. 2-89)

Prescribed by ANS! Std 238-18 -
i 298-102

1.0

2.0
3.0

4.0

5.0

Contents

Scope
1.1 Project Status
1.2 Document Overview

Applicable Documents

High Level Design

3.1 Phase 1

3.2 Phasell

3.3 Phaselll

3.4 System Components
3.4.1 Tactical Voice Terminal
34.2 IVOX Terminal
3.4.3 Tactical Data Terminal
3.4.4 JMCIS Terminal
345 System Manager and Boot (SM)
3.4.6 Data/Voice Integrator (DVI)
347 MCA Network (MCA)
3.4.8 Red Link Controller (RLC)
3.4.9 VME Embedded Encryption Module (VEEM)
3.4.10 KG-84
3.4.11 Black Link Controller (BLC)
3.4.12 GPS
3.4.13 UHF SATCOM Subsystem
3.4.14 HF Subsystem

Tactical Voice Terminal Design
4.1 TVT System Behavior
4.2 TVT/TVT Messages

Data/Voice Integrator Design

5.1 Overview

5.2 Services Required from RLC

5.3 Half Duplex Circuit Control

54 DVI Messages

5.5 DVI Service Interface
5.5.1 DVI Server Access Via TCP
5.5.2 DVIasa“TCP Bridge”
5.5.3 Client Registration
5.5.4 Opening and Closing a DVI Service
5.5.5 Datagram Service
5.5.6 Virtual Circuit Service
5.5.7 Half Duplex Voice Service
5.5.8 Flush
5.5.9 DVI Status

5.6 DVI Operation
5.6.1 Initialization Phase
5.6.2 Misinterpreted EOTs

iii

OO OVWOOWWWWROINIAWNNWUNNWN B W=

e e
C OO OO

Pt ek ek
~J = -

W WL WWERNRNNNDNNDNNDN - e -
A LWWOOVLVOIIIAWUNWUNOWYWYWOVY

6.0

Contents

5.6.3 Operational Phase (Cell Packing, Multiplexing, & Data/Voice Integration) 34

5.7 DVI Software Design

5.8 DVI Virtual Circuit Management

Appendix

6.1 Virtual Circuit Stream Service

6.2 Subnetwork Provider Interface (SNPI) Overview
6.3 Phase II (SNPI-based) Virtual Circuit Management

iv

37
40

42
42
43
45

List of Figures

ATD Phase I system block diagram for a field demonstration node
ATD Phase 1I system block diagram for a field demonstration node
ATD Phase III system block diagram for a field demonstration node
Expanded state machine diagram of TVT half duplex operation
Expanded state machine diagram for TVT full duplex operation
Half duplex call management protocol.

TVT message format

DVI state machine diagram.

A G R O

DVI peer-to-peer message format.
10. DVI datagram and virtual circuit cell and message formats.

11. Phase I configuration using a pair of DVIs acting as a “TCP bridge.”

12. Phase III configuration showing a pair of CS gateways “tunneling” IP via DVI

and MCA transport services.

13. Commands available from VxWorks rlogin shell for displaying/resetting statistical

variables and turning tracing on/off.
14. Flow chart of DVTI half duplex operation.
15. Conceptual view of multiplexed cell streams to form a DVI output stream.
16. Packing of Virtual Circuit Message and/or Datagram Cells
17. Cell creation and queuing.
18. Multiplexing cells to create a transmitted cell stream.
19. DVI software design.
20. Setup, operation, and termination of a simplex virtual circuit.
21. Setup, operation, and termination of a full duplex virtual circuit.
22. Cell format for a virtual circuit stream.
23. Setup, operation, and termination of a SNPI-based simplex virtual circuit.

24. Setup, operation, and termination of a SNPI-based full duplex virtual circuit.

25. Setup, operation, and termination of a SNPI-based half duplex virtual circuit.

12
13
14
17
20
21
23
26

26

31
33
35
35
36
36
39
41
41
42

- 46

46
47

XI.
XIIL

XIII.

List of Tables

TVT State Machine Events

TVT State Machine States

TVT End/End Protocol Messages
DVIMCA Service Requirements
Types of Virtual Circuit Control Cells

Messages for Client Registration

. Messages for Opening and Closing DVI Services

. Messages for Managing DVI Datagram Services

Messagesvfor Managing DVI Virtual Circuit Services
Messages for Half Duplex Voice Control of a DVI
Flush Message

Messages for Requesting and Sending DVI Status

Virtual Circuit Stream Service Requirements

. XIV. SNPI Messages

vi

13
16
18
21
24
27
28
29
30
30
31
32
42
43

Voice Management and Multiplexing Protocols
Developed for the Data and Voice Integration
Advanced Technology Demonstration

1.0 Scope

1.1 Project Status

The Data and Voice Integration ATD is a four year program managed by the Naval
Research Laboratory (NRL) with a goal of demonstrating integrated communication services
using low bandwidth, tactical communication channels. There are three phases of demonstration
planned under the program with each phase involving increasing complexity. The demonstrations
are as follows: Phase I consists of a single link demonstration that integrates low data rate (1200
bps), real-time voice and non-real-time data services over a low capacity tactical circuit. Phase II
involves a tactical network demonstration of data and voice (600, 800, and 1200 bps) integration
enabled by new networking protocols operating within a multichannel architecture. Phase III
demonstrates data/voice integration with internetworking and multicast routing capabilities.

The Phase I demonstration goal was operation of integrated tactical data and voice ser-
vices over a single 2400 bps tactical HF groundwave circuit. This goal was accomplished by
establishing a circuit spanning the Chesapeake Bay between NRL facilities at Chesapeake Beach,
MD, and Tilghman Is., MD, in December, 1993, and by successfully supporting simultaneous
data and voice transmissions. The Phase I Data/Voice Integrator (DVI) directly supported several
data applications, including a whiteboard, reliable JPEG image file transfer, remote writing (e.g.,
vtalk), etc. Also, a 1200 bps voice application was demonstrated.

At the present time we have successfully completed both a laboratory demonstration and a
field test of the of the HF network developed for Phase II. In mid-June, 1995, NRL personnel con-
ducted a series of four laboratory demonstrations for the Navy using a fully implemented three
node HF radio network using closely-coupled, low power antennas to radiate RF energy. In mid-
July, 1995, a set of field tests of the same system were successfully concluded. For the field dem-
onstrations, nodes were located at the Naval Academy, at Tilghman Is., MD, and at Chesapeake
Beach, MD. As a testimony to its utility, much of the voice coordination during the field tests was
done via the HF radio network. Moreover, when it was discovered that we had mistakenly taken
an outdated version of one of the test applications to the field, the test coordinator, while stationed
at Tilghman, Is., was able to download the current version of the software from his computer at
NRL via HF from Tilghman Is. to Chesapeake Beach and, from there, via a phone hookup to
NRL. He then disseminated the software to the other sites via HF. Also, test results that were
archived at each of the sites on a daily basis were downloaded to the Tilghman Is. site via HF so
that preliminary analysis could be performed while still in the field. These test results are now
undergoing a thorough analysis and will be the subject of a forthcoming report.

The purpose of this report is to document voice management and multiplexing protocols
initially developed and implemented for Phase I of the Data/Voice ATD. Subsequently, with minor
modifications, the cell multiplexing technique described in this report has been integrated with
Multichannel Architecture (MCA) network software [1, 2] that was used for the Phase II demon-
strations.

Manuscript approved August 25, 1995.

MCA implements many unique networking concepts to create a robust, adaptive, tactical
broadcast network that uses distributed control mechanisms. MCA protocols periodically probe
the network to learn network topology and adapt when links or nodes are either lost or recovered.
MCA provides relaying capability in several ways. For broadcast services, MCA develops and
maintains a broadcast backbone that relays all broadcast traffic. The backbone is reconfigured
whenever topology changes occur. Point-to-point services are routed off the backbone, if possible,
in order to keep the backbone capacity available for the broadcast services. MCA can support
relaying via the backbone, even in a sparsely connected network, without sacrificing broadcast
capacity. In a TDMA network, broadcast capacity drops dramatically if it is required to use band-
width to support relaying in order to maintain network connectivity. MCA maintains capacity by
assigning a different channel to each transmitter (one transmitter per MCA node) and allowing
each transmitter to transmit in every TDMA slot. Each MCA node has multiple receivers that can
be retuned for every slot, if necessary, in order to listen to several neighboring nodes simulta-

neously.

MCA uses much of the design and the software developed for the DVI as described in this
report. It does so in order to add two additional capabilities to MCA. One is to provide an inter-
face that the Internet Layer can use to acquire services from the Subnetwork Layer. This interface
has been termed the Subnetwork Provider Interface (SNPI) and is an enhancement of the DVI
interface developed for the Phase I demonstration. The other capability added to MCA is that pro-
vided by the DVI cell multiplexing protocol. This protocol supports the multiplexing of virtual
circuits and datagram services. Virtual circuits exhibit low latency and guaranteed capacity.
Capacity that is not reserved, as well as capacity that is reserved but not actually being used, is
dynamically allocated to support datagram services. In addition, datagram services can be priori-
tized.

The Phase II demonstration system also incorporates a Communication Server (CS) com-
ponent that acts as an IP router and can use MCA'’s SNPI to acquire subnetwork services on behalf
of it’s users. Users no longer attach directly to the Subnetwork Controller (SC) as was done in the
Phase I demonstration system. Instead, users may run standard IP applications that use the CS just
as they would use any other IP router or, if a user application has special communication require-
ments, e.g., virtual circuit quality of service (QOS), an Application Program Interface (API) has
been implemented to allow it to negotiate with the CS to accommodate its QOS requirements.

The Phase III demonstration system will add an additional subnetwork to the Phase II sys-
tem so that the CS can be used to demonstrate the capability to route traffic via multiple wireless
subnetworks. A UHF SATCOM link integrated with the new SNPI version of the DVI will pro-
vide the second SC.

Other major areas of development for Phase III, besides adding a second subnetwork, will
be inclusion of multicast routing (M-OSPF) and resource reservation (RSVP) protocols. The deci-
sion to integrate RSVP is a significant one since it will supplant the API recently developed for
Phase II. At the time we made the decision to develop the API, RSVP had not reached a sufficient
level of maturity to make it a viable option for the Phase II system. However, RSVP now appears
to be sufficiently developed to make it usable for Phase III system development. The reason to

migrate to RSVP is to maintain the highest possible level of interoperability with IP-based sys-
tems.

1.2 Document Overview

As previously stated, the purpose of this report is to document the voice management and
multiplexing protocols developed for Phase I of the Data/Voice ATD (D/V ATD). The multiplex-
ing protocol employes a cell-based technique that supports virtual circuit and datagram services
over error-prone, low-bandwidth, tactical communication links. This protocol, along with a ser-
vice interface was implemented on top of the VxWorks multi-tasking operating system using C++
and has been named the “Data/Voice Integrator” (DVI). As eluded to earlier, the Phase I MCA
network has inherited much of the DVI development. MCA modifies some of the message for-
mats described in this report in order to accommodate relaying and will be described in a report
on MCA development for Phase II.

This document begins with the presentation of a high level design for all three Phases of
the Data/Voice Integration ATD in order to describe the context in which the detailed design of the
DVI fits. Also, voice management protocol designs for a Tactical Voice Terminal (TVT) are devel-
oped as part of the DVI context. Management of half duplex voice places special requirements
upon the Subnet Controller Interface (SNPI) supported by the DVI and, therefore, is a prerequisite
to defining that interface.

The primary focus of this report is the design of the DVI component. The DVI served as
the development vehicle for the SNPI and the implementation of virtual circuit and datagram ser-
vices that can be accessed via the SNPI. The predecessor to the SNPI, as it was implemented for
Phase I of the D/V ATD, is documented in the body of this report and is the only documentation
that exists. The SNPI, which is essentially an embellishment of the original DVI interface, is
described in an appendix. Full SNPI documentation is given in [3]. At the heart of the DVI design
are the message and cell formats used to create DVI virtual circuit and datagram services and the
cell multiplexing scheme used to control bandwidth usage.

2.0

Applicable Documents

D. J. Baker, J. P. Hauser, D. N. McGregor, and W. A. Thoet, “Design and Performance of
an HF Multichannel Intratask Force Communication Network,” NRL Report 9322,
November 12, 1991.

W. A. Thoet, D. J. Baker, and D. N. McGregor, “A Multichannel Architecture for Naval
Task Force Communication,” NRL/FR/5520--94-9703, January 30, 1994.

“Software Requirements Specification for the Data and Voice Integration Advanced Tech-
nology Demonstration,” ViaSat Document # 608300-94-001, April, 25, 1994.

J. P. Hauser, “System Design and Development of a Low Data Rate Voice (1200 bps) Rate

. Converter,” NRL/MR/5520-92-7136, September 30, 1992.

3.0 High Level Design
3.1 Phase 1

Figure 1 shows a Phase I system design for a single ATD node and indicates a mapping of
node components to the OSI architecture. The Application Layer consists of multiple user pro-
cesses that remotely access the DVI server via TCP connections across an Ethernet LAN. User
processes may execute on one or several host terminals. For the Phase I field demonstration in
December, 1993, a Sun Workstation was used to host several datagram applications plus the Sys-
tem Manager & Boot, while a PC w/ I860 processor board hosted a Tactical Voice Terminal. The
Data/Voice Integrator and Red Link Controller shared a MVME167-34A single board computer
running the VxWorks 5.1 real-time operating system. DataComm, Inc., Model 1102 serial tone
modems were employed to support an HF groundwave link that carried the cell stream supplied

by the DVL

. . Tactical Data Terminal Application
Tactical Voice Terminal System Manager & Boot Presentation
| | Session
Etharnt N
D/ Integrator Internet (null)
Network (null)
Link
HF Serial Tone Modem
HF Xmtr HF Revr
Physical

2 |

Figure 1. ATD Phase I system block diagram for a field demonstration node.

3.2 Phasell

The Phase II ATD node design shown in figure 2 shows an enhanced Application Layer
with an IVOX Voice Terminal running on a SGI platform that supports a range of vocoding rates
down to 600 bps. IVOX is an IP-based voice terminal application developed in-house at NRL. It
combines low data rate voice compression algorithms with voice management protocols and a
GUL Also included is a version of a Joint Maritime Information Command System (JMCIS) that

Application
IVOX Voice Terminal JMCIS Terminal System Manager & Boot Presentation
(SGI) (TAC-3) (SUN)
- l l I Session
Ethernet
ommunication Server Transport
Internet
MCA Network
etwork
i l
VEEM
I
Black Link
| Link Controller

! []

HF HF
S| | sopmtr
| | T
1.1
HF Xmtr HF Revr
L] /\L’ Physical

GPS

Figure 2. ATD Phase II system block diagram for a field demonstration node.

has been specially adapted for IP compatibility and will be further modified to take advantage of
the API. The applications, such as IVOX, that use the API can negotiate special QOS parameters
with the CS. Any of the Application Layer platforms can use MCA standard datagram service via
the CS to support IP applications. The Phase II system uses link level, time-of-day based encryp-
tion (i.e., the VEEM - VME Embedded Encryption Module) to provide a COMSEC capability.
The Black Link Controller (BLC) interfaces to the black side of the VEEM and controls several
HF transmission strings.

3.3 Phaselll

The Phase III design depicted in figure 3, shows the anticipated configuration of a Phase
ITII demonstration node. The Phase III design includes an additional subnetwork in the form of a
UHF SATCOM link over which the DVI multiplexing protocol can be run. Link encryption is
provided by a KG-84. The CS can route IP packets through either subnetwork - MCA /HF or
DVI/UHFE.

JMCIS Terminal System M & Boot Application
IVOX Voice Terminat ‘erminal ystem Manager 00!
?ggl) ermina (TAc_a) (SUN) Presentation
. ession
- 1 | | Sess
Ethernet
ommunicafion Server Transport
I Internet
I SNPI'i‘Fom End] [SNPIFront End]
MCA Network DN Iintegrator Network
f RLT f RLT]
VEEM I
J Link
KG-84
Black
| Link Controller
[[
s ri:Ff s{ ¢ JF oy
] one atcom
Modem Seﬁig!’z'onn Terminal
[
11
HF Xmtr |
HF Revr l ELTSAT -7 Physical

GPS

Figure 3. ATD Phase III system block diagram for a field demonstration node.

3.4 System Components

The following subsections briefly describe the system components shown in figures 1, 2,
and 3.

3.4.1 Tactical Voice Terminal

The TVT implementation fielded for our December ‘93 demonstration was hosted on a
486 computer Workstation w/ ISA 1860 dual processor card w/ 16 Mbytes of RAM. Because of
problems maintaining adequate voice quality at 1200 bps, the ability to support only half duplex
operation, and high latency within the TVT itself, the decision was made to pursue an alternate
TVT design following the Phase I field demonstration.

NRL rapidly developed an alternative TVT in-house that was hosted on a Sun SPARCsta-
tion 10. This TVT supported full duplex voice operation at 1200 or 2400 bps, had low latency, and
maintained consistently good voice quality at 1200 as well as 2400 bps provided the standard Sun
microphones were replaced with high quality, directional microphones that adequately limited
background noise. This version of a TVT was used successfully to demonstrate integrated voice

and data in several post Phase I laboratory demonstrations conducted at NRL in the Winter and
Spring of 1994.
3.4.2 IVOX Terminal

The IVOX terminal is the result of more in-house development at NRL. We are currently
hosting IVOX on Silicon Graphics (SGI) machines to gain the processing power necessary to run

600, 800, 1200, and 2400 bps vocoder algorithms in real time. Moreover, IVOX implements a
GUI and a set of call management protocols that used the state machine diagrams presented in this

report (figures 4 and 5) as a starting point for development.

3.4.3 Tactical Data Terminal

The tactical data terminal (TDT) demonstrated during the Phase I field demonstration and
subsequent in-lab demonstrations consisted of several application programs written in-house that
show a variety of capabilities. A partial list of these application programs follows:

* atdpipe - This application creates a text conversation capability. What a user types on his
input screen is displayed remotely on another users output screen, and vice versa.

» atd_jpeg - This application supports reliable transfer of video images compressed in a jpeg
format.

* whiteboard - This application supports a map redrawing and annotation capability
whereby a user can update a remote user’s screen and vice versa.

 reliable_channel - This application provides a reliable byte stream service.

 test6 - This application, though it does not provide a service to the user, was a valuable
driver for testing the robustness of the DVI’s datagram handling and flow control mecha-
nisms. It floods the DVI with datagrams for transmission until shut off by the DVI’s flow
control mechanism.

These Phase I data applications are being replaced with a more sophisticated suite of data
applications for Phases II and III. The Phase I data applications were developed to demonstrate a
concept of operation rather to provide a polished end product.

3.4.4 JMCIS Terminal

The Joint Maritime Command Information System (JMCIS) terminals, one per ATD node,
are hosted on TAC-3 workstations. JMCIS maintains and displays track information. INRI, the
company that developed JMCIS, has modified NRL’s terminals to relay track information via a
series of TCP/IP connections. Successful communication has been demonstrated among three
JMCIS Terminals using TCP connections supported by the Phase II system operating in our labo-
ratory environment. In this configuration, one JMCIS terminal acts as a relay for the other two,
thus permitting all three terminals to present a consistent view of a developing scenario.

A desirable modification to this approach for Phase III would be to use multicast IP rout-
ing with resource reservation (RSVP) rather than multiple TCP connections. JMCIS would
require some redesign to take advantage of this approach and it is unlikely that the D/V ATD will
be able to fund further IMCIS development.

3.4.5 System Manager and Boot (SM)

The SM is hosted by a Sun SPARCstation. All other components, except for the applica-
tion terminals, boot from the SM host. SM provides the means to control and monitor the ATD
communication system. A detailed functional description of SM with some design information
can be found in [3].

3.4.6 Data/Voice Integrator (DVI)

The DVI is implemented on a MVME167 single board computer hosted in a VME chassis
and running the VxWorks 5.1.1 operating system. In the Phase I system, the DVI provided virtual
circuit and datagram services directly to the client applications. In the Phase IT and Phase III sys-
tems the CS component directly services client applications. Therefore, the DVI provides virtual
circuit and datagram services indirectly to user applications via the CS in the current implementa-
tion.

3.4.7 MCA Network (MCA)

The MCA network also provides virtual circuit and datagram services indirectly to user
applications via CS. It does so by relaying virtual circuit and datagram cell streams over a dynam-
ically changing, multihop, HF groundwave network. MCA can work equally well over other RF
media, e.g., UHF-LOS. In fact, MCA could be considered a better fit for UHF-LOS than HF-
ELOS because of MCA'’s ability to support relaying with little loss in performance. Historically,
the extended communication range offered by HF-ELOS has been used to compensate for the
lack of relaying capability in Navy tactical networks. Running MCA over UHF-LOS would pro-
vide more bandwidth without sacrificing connectivity as long as each node in an MCA tactical
network has at least one other node within communication range.

3.4.8 Red Link Controller (RLC)

Figures 1, 2, and 3 contain three different types of RLCs - the DVI/HF (Phase I) RLC, the
MCA/HF (Phases II & IIT) RLC, and the DVI/UHF (Phase III) RLC. The DVI/HF (Phase I) RLC
was hosted within the same processor card as the DVI and controlled a DataComm HF modem.
For MCA, the RLC is hosted on a separate processor and provides the Red side data and control
interface to the VEEM encryption module. Also, for MCA (Phases II & III) the RLC implements
the required bypass controls to communicate with a Black Link Controller. The design for the
DVI/UHF (Phase III) RLC is a modification of the DVI/HF (Phase I) RLC design to interface
directly to a KG-84 (rather than the DataComm modem). This is the approach depicted in figure
3.

3.4.9 VME Embedded Encryption Module (VEEM)

The VEEM is a time-of-day (TOD) based cryptographic device hosted on a VME board.
Command bypass and TOD synchronization functions are supported by the VEEM. The TOD
synchronization capability eliminates the necessity to send lengthy synchronization preambles
over the air. This significantly reduces synchronization overhead for packet radio networks, such
as MCA, which must resynchronize their communication links frequently.

3.4.10 KG-84

KG-84s will provide transmission security over the Phase IIl UHF SATCOM link. The
over-the-air synchronization preamble required by the KG-84 has a negligible impact on the full
duplex, full period termination link that will support DVI transmissions for Phase III.

3.4.11 Black Link Controller (BLC)

The BLC controls HF modems and transmission hardware on behalf of the MCA network
controller. MCA, via the RLC and VEEM bypass, issues commands to the BLC to retune receiv-
ers, resync the modems, and send and receive encrypted data. Each command given to the BLC
indicates a time for execution of the command by the BLC. Thus, the BLC acts as a slave to the

MCA network controller.

3.4.12GPS

The Datum GPS receiver will provide a 1 ppms timing pulse to processor boards within
both the RED and Black VME chassis. Timing information will be used to implement a time-of-
day based synchronization protocol with the VEEM link encryption device.

3.4.13 UHF SATCOM Subsystem

A 25 kHz UHF SATCOM research channel is readily accessible to experimental users. A
tentative plan for Phase III would place one terminal (one TD-1271 UHF SATCOM DAMA
modem & two WSC-3 UHF SATCOM radios) at NRL and one at NRaD. NRaD would also pro-
vide the UHF SATCOM DAMA system controller and support for DAMA operation. DAMA, via
the system controller, assigns slots of varying lengths and data rates to users, thus effectively par-
titioning a 25 kHz DAMA channel into subchannels of lesser bandwidths. Our intention is to
acquire two non-adjacent DAMA slots, i.e., simplex subchannels, in order to support a full duplex
UHF SATCOM link over which to run a pair of DVISs in full duplex mode. DAMA use has been

mandated for MILSATCOM use by 1996.
3.4.14 HF Subsystem

The HF subsystem will use GAC MX-518 serial tone modems that support data rates
<2700 bps. The MX-518 resides on a single VME board and provides a packet mode of operation
featuring a relatively short sync preamble (80 ms). The HF receivers must be remotely tunable
with a low latency retuning capability. The time required to retune a receiver adds directly to
MCA overhead. Harris R-2368/URR receivers will be used for this purpose. MCA places less
stringent requirements upon HF transmitters since the single transmitter of an MCA node does not
require a remote control interface. Its frequency is not dynamically retuned as are the frequency
settings of MCA receivers.

10

4.0 Tactical Voice Terminal Design

In order to achieve data/voice integration over a HF 2400 bps groundwave channel, a
very-low-data-rate voice processor is required to encode/decode real-time speech at less than
2400 bps. The present IVOX implementation can perform vocoding at rates as low as 600 bps.
Such low bandwidth capabilities for voice make it possible to support simultaneous data services
over the remaining link capacity via an adaptive multiplexing scheme.

Another approach to further reducing the bandwidth requirements of voice is to detect
silence gaps in the speech output stream and eliminate multiplexing the silent periods over the
transmission media. The speech analysis output of the vocoder facilitates this approach since the
amplitude parameter is a valid indicator of talk spurts and silence gaps. The DVI multiplexing
scheme supports this approach directly since reserved but unused virtual circuit capacity is
dynamically allocated to the datagram service.

The following subsections document the original TVT designs (which formed the basis
for later IVOX development) for the Application/Session TVT functions and the TVT analog
interface, i.e., handset. Also, the TVT requires an interface to the DVI. To properly specify the
TVT/DVI interface it is first necessary to define the behavior of both the TVT and the DVI. The
TVT/DVI interface is included as part of the more general DVI Server Interface and is covered in
section 5.5 as part of the DVI design.

4.1 TVT System Behavior

Behavior of the TVT Application and Session functions is described in terms of expanded
state machine diagrams as given in figures 4 and 5. Implementation of these state machines, one
machine for half duplex and another for full duplex, requires the ability to sense the current state
of the handset’s on/off hook and, for half duplex, the push-to-talk (PTT) button. Also, the half
duplex design, as it is presented in figure 4, requires that the DVI provide xon/xoff and service
grant/deny control. The alternative to using xon/xoff would be to allow the TVT to send voice
traffic to the DVI while the DVI is in a receiving state. In that case, the DVI would either have to
buffer the voice traffic and then send it when the half duplex circuit turns around or discard voice
traffic sent by the TVT while the DVI is in a receiving state. The TVT uses the Vc Svc Req com-
mand to request voice service from the DVI. The DVI responds by either granting the service
request (Vo Svc Grnt) or denying it (Svc Not Grntd).

A walkthrough of figure 4 begins in the Mode Selection state with a user selecting half
duplex TVT operation, thus causing the TVT to transition to the Waiting state. From the Waiting
state, the TVT may transition to either the Addr Selection or the Call Pending states. An Off Hook
event (i.e., the user removes the handset from its cradle) transitions the TVT to the Addr Selection
state, permitting an address (phone number) to be entered. An Call Req event (i.e., incoming call)
transitions the TVT to the Call Pending state.

Besides transitioning the TVT to the Addr Selection state, the Off Hook event has the
added effect of sending a tone to the handset. This is depicted in figure 4 by an arrow pointing to a
small box (Tone). All such depictions are an expansion of the TVT’s state machine
diagram to show events that effect the states of other devices external to the TVT. These other
devices are the handset, the DVI, and the remote TVT (HS | pVII V1). In some instances,

11

if (Waiting Tor f
Cigglitl aIIing)/ /

n Hook

n Hook

Grnt

Off Hook

Busy n Hook (1) Call Req
Slct Half
Dux On
n Hook , HOO:S
/ Busﬁj

Rina Cal

i

|

f

|

|)/
Tx Hold

Ring /
/ Cal Cnc
/o Re
. . / {
1) if (Calling) /
MGy, | =
|
LA Off Hook =
(2|) li: (Calling |
TT Arbitration
| Receivi;g l’ CallAns x OK
| Tx Pending /
| Blocked | / Busy
| Sendin
Vo Sve Tel E"i‘ nHook” (1)EOV)/ HS
. SOV
i <h.....~’ ,/
Event Sources (2)% on / T
/ n Hoo
Han,dset On/Off Hook | PTT I PTT | Call Init | Slct Half Dux > DV
GUI PTT
Vo Sve Grnt | Sve Not Grntd | Xon | Xoff | Tx OK ov
ovi VP
0“
remote] Call Req | Call Cncl | Call Ans | SOV | EOV | VP Hook VP
™vT > =y

Figure 4. Expanded state machine diagram of TVT half duplex operation.

more than one external event results when a TVT state change occurs. The numbers used to prefix
certain multiple external events indicate the order of their occurrence when order is significant.

The remainder of the walkthrough of figures 4 and 5 is left to the reader. Explanations of
each event and each TVT state are given in Tables I and II to assist in this process. Also, figure 6
can be of aid since it presents a scenario for TVT operation that is derived from figure 4.

12

Event Sources

\\Slct Full Dux Call Req

if (Waiting for
C|rc§u|tlc Img)/

Ring [us]

1 Gpln

(2) |f (Callmg
Sending

I Receiving)

Vo Svc Term

E -

On/Off Hook | Call Init

Handse!
GUI

ovi

Vo Sve Gmt | Sve Not Grntd

remote

Call Req | Call Cncl ! Call Ans | VP

Figure 5. Expanded state machine diagram for TVT full duplex operation.

Table I: TVT State Machine Events

Event

Description

Dux

Slct Half

This event results from a yet to be defined mode selection process that occurs
while the TVT is in the Mode Selection state. The TVT should query the com-
munication system to determine what modes (half or full duplex) and rates can
be supported, report this information to the user, and then allow the user to
select the desired mode and rate.

13

The user places a call by removing the receiver from the hook, waiting for the tone to extin-
guish, and clicking the PTT button. In the Phase |, single link system no mechanism for
addressing the call is needed. Follow on systems permit entry of a callee address.

Lift Rcvr' Off Hook

‘Tone HS I; Tone TVTI
L

Addr In _, pew=s Call Init

P e [P) SR
———

Vo Svc Grnt DvI

The TVT initiating the call sends the Call Req message and then
Ax On sends an Rx On to the DVI. This turns the circuit around so that
™ the destination can respond quickly with a Call Ans message.

Call Reg " Ring

If the call is answered, the remote TVT responds with a Call Ans message. The local TVT
extinguishes the local ring.

ming_[s kA ﬁina__E“_cm_E‘ oftook e it Rovr

If the user who placed the call hangs up before the remote user answers, the
local TVT sends a Call Cncl message. The Call Cancel message will be

bvi Vo Svc Term) : (
" queued by the DVI, if needed, until the DVI retumns to transmit mode.
Hang up J§'} T On Hook TvrlCall Cnel .lm | Ring Hs |Aing l
L
Dvi
TTXOK ~— | . *TxHold

\ " If the remote user answers and immediately
Voice Voice VT i sov VT PTT HS PTT depresses the PTT button, the remte TVT.

‘ sends a SOV message followed by voice traffic.

The remote user indicates completion of a voice
PrT j”s PIT transmission by releasing the PTT button. The

remote TVT sends an EOV message.

The local user likewise depresses the PTT but-

___\’Lics_E_VO_'CS—, ton to send voice traffic to the remote TVT.

The local user indicates completion of a voice
BTT PTT EOV VT oice s |-Yoice , transmission by releasing the PTT button.

Either party may terminate the half duplex conversation by hanging up the phone. ATVT ini-
tiates termination by sending a Call Term message to the other TVT.

Cradle Rcvr.l ::: l On Hook slrvr]Call Term Tone Hs |-Tone

Figure 6. Half duplex call management protocol.

14

Table I: TVT State Machine Events

Event Description

On/Off The standard meaning is assumed, i.e., the action of removing a handset from its

Hook cradle (off hook event) and the action of returning it to its cradle (on hook
event). The on/off hook function can be emulated by the TVT’s GUI in order to
support handsets that do not have an on/off hook.

PTT/PTT PTT means that the push-to-talk button is asserted. PTT means that the push-to-
talk button is deasserted. As with the on/off hook function, the PTT button can
be emulated by the TVT’s GUI, the TVT’s keyboard, or the handset may have a
PTT button.

Call Init The Call Initiation event is sourced by the GUI (and/or keyboard or keypad)
when an address selection has been made. The analogous event in the public
phone system is entry of the final digit of a phone number. For the ATD system
it might be preferable to have a separate button on the GUI or keyboard that ini-
tiates the call.

Vo Sve Grnt | In half duplex mode this is a message from the DVI indicating that the half
duplex circuit is in local transmit mode so that a Call Req can now be issued by
the TVT. In full duplex mode this is a message from the DVI indicating a full
duplex circuit is available to support the call.

Svc Not This is a message from the DVI indicating that it cannot support the voice ser-

Grntd vice being requested at this time.

Tx OK Tx OK completes a TVT/DVI handshake initiated when the TVT sends a Tx
Hold command to the DVI. The DVI must be in the transmit state in order to
return a Tx OK (see figure 8)

Call Reg/ A Call Req is a message from a remote TVT placing a call. A Call Cncl message

Cncl is received if the remote TVT decides to hang up the call before it is answered
locally.

Xon/Xoff Xon and xoff events are sent by the local DVI to indicate that the DVI is in the
transmit mode (xon) or that the DVI is in receive mode (xoff). '

SOV/EOV SOV stands for start of voice traffic being received from a remote TVT. EOV
stands for end of voice traffic being received from a remote TVT.

VP VP represents either the sending or the receiving of a voice packet.

Call Ans A Call Ans event occurs when a Call Ans message is received from a remote

TVT, indicating that the pending Call Req has been answered by the remote
TVT and that the remote user wishes to begin a conversation.

15

Table II: TVT State Machine States

State

Description

Mode
Selection

Mode Selection is an initialization state in which the user decides whether to use
half duplex or full duplex voice mode. When using MCA as a subnet, it may be
necessary to do Addr Selection prior to Mode Selection since virtual circuits to
one hop neighbors may support full duplex mode while virtual circuits requiring
relays may support only half duplex.

Waiting

This is a quiescent state in which the TVT is waiting for voice management
activity to occur. An On Hook event always returns the TVT to the Waiting
state. The TVT can transition to two other states from the Waiting state: an Off
Hook event transitions to the Addr Selection state or a Call Req event transitions

to the Call Pending state.

Addr Selec-
tion

The Address Selection state enables user entry of a callee address. The user may
be assisted in this process by a GUI supported phone book.

Waiting for
Circuit

The TVT waits for the DVI to respond to the Vo Svc Req. If a Vo Sve Grnt is
received, the TVT transitions to the Calling state, or if the DVI returns a Svc
Not Grntd, the TVT returns to the Waiting state. An internal ring (heard only via
the Handset’s receiver) is fed to the Handset.

Calling

The TVT is in the Calling state while a Call Req that it has issued to a peer TVT
is pending. Either the peer TVT being called will respond with a Call Ans or the
user who initiated the call will tire of waiting for an answer and hang up the
phone, i.e., an On Hook event. When using the MCA subnet, it will be necessary
to limit the time given to the callee to answer the call because of MCA time-outs
used to reserve virtual circuit bandwidth that is not yet allocated.

Call Pend-
ing

This is a state that is entered upon receiving a Call Req from a remote TVT and
that produces an external ring (as opposed to a ring heard only via the Handset’s
receiver). The Call Pending state cannot be entered if an Off Hook condition
exists. There are two ways to exit the Call Pending state: 1) the remote TVT
hangs up the phone, thus sending a Call Cncl, or 2) an Off Hook event occurs,
i.e., the user answers the phone. '

PTT Arbi-
tration

This is a state from which the PTT button is arbitrated. If the local PTT button is
asserted, a Tx Hold is issued to the local DVI and the TVT transitions to the Tx
Pending state. If the local DVI then returns a Tx OK, the TVT transitions to the
Sending state. If an SOV event occurs, i.e., the DVI begins delivering voice traf-
fic from a remote TVT, the local TVT transitions to the Receiving state. The net
result is that when the TVT is in the PTT Arbitration state, either the local PTT

button or the remote PTT button, via a SOV, will gain control of the TVT.

16

Table II: TVT State Machine States

State Description

Tx Pending | When the TVT sends a Tx Hold to the DVI, it waits in the Tx Pending state for a
DVI response. If the DVI can honor the Tx Hold command, i.e., the DVI is in
the transmitting state, it returns a Tx OK and the TVT is enabled to transmit
voice packets by transitioning to the Sending state. However, if the DVI is in the
Receiving state, it can’t service TVT transmissions and returns an Xoff to the
TVT.

Receiving This is a state in which the TVT is receiving voice traffic. The TVT cannot exit
this state unless the EOV event occurs or the local user hangs up the phone.

ndin This is a state in which the TVT is transmitting voice traffic. The TVT exits this

state when the PTT button is deasserted or when an On Hook event occurs.

Blocked This is a state in which the TVT is prevented from transmitting voice traffic by
the DVI because the DVI is not in transmit mode.

4.2 TVT/TVT Messages

The TVT peer-to-peer protocol is implemented via a set of messages that pass voice data
and control between TVTs. These messages are described in Table III and figure 7. Table III is a
high level abstraction showing the data and control necessary to support a TVT peer-to-peer pro-
tocol. Figure 7 is a suggested TVT peer-to-peer message design. All messages have a one byte
header and are an integral number of bytes in length. The SOV, EOV, and VP messages carry
vocoded voice data. The remaining call management messages (Call Req, Call Ans, Call Cncl)
use the payload to carry additional call management parameters. The sequence number in each
message header facilitates detection of message losses. The virtual circuit service offered by the
DVI will deliver messages in proper sequence, but messages may be lost or may contain bit

CITOIS.
e TVT Message (integer number of bytes < 1024)——»|

| TVT Header| TVT Payload]

—
’ 3bits | 3bits [2bits

| Msg Type | Seq Num [Cksum|

Figure 7. TVT message format

17

Table III: TVT End/End Protocol Messages

Type Function Parameters
Call Req Requests a connection with a remote user | Half or full duplex;
' Vocoder algorithm/rate;
Caller’s id
Callee’s id
Call Ans Remote user answers and connection is Caller’s id
established Callee’s id
Call Cncl Connection request is canceled before Caller’s id
connection is established Callee’s id
SOV (Start | First packet in a stream of voice packets vocoded voice data
of Voice)
EOV (End | Last packet in a stream of voice packets vocoded voice data
of Voice)
VP (Voice Packet of vocoded voice vocoded voice data
Packet)

18

5.0 Data/Voice Integrator Design

5.1 Overview

The DVI achieves data/voice integration by interspersing data and voice digital packets or
cells at the origination node and transmitting the multiplexed stream of cells over a communica-
tion link. At the reception node, the voice and data streams are demultiplexed and appropriately
reconstructed prior to presentation to the user. Here we develop a detailed DVI design for multi-
plexing the data and voice input streams into a single output stream at the source, feeding the
stream to the RLC, and demultiplexing the stream at the destination. Actually, the services pro-
vided by the DVI are more generalized than its name suggests since the DVI integrates multiple
virtual circuit and datagram services that can be used to support as many simultaneous users as
the transmission bandwidth can handle.

5.2 Services Required from RLC

The DVI requires a digital transmission service from the layer beneath it. The characteris-
tics of the service are as follows:

* The transmission service must handle loss of bit level synchronization. The DVI sends one
cell at time to the RLC for transmission and receives one cell at a time upon reception.
Thus, the DVI pads the final cell of a transmission if it is not a full cell. Using fixed length
blocks or “cells” provides a means to maintain synchronization with the DVI message
stream in the presence of bit errors as long as the RLC provides a bit stream with the cor-
rect number of bits. Since it is possible for a UHF SATCOM channel to lose synchroniza-
tion and thus gain or lose a bit, especially when running in a full period termination type
of mode as it would for full duplex operation, the RLC must reestablish synchronization.

* The transmission service may be half or full duplex. However, if the service is half duplex,
the RLC must support control of the transmit/receive switch.

* The transmission service should provide a nearly constant transmission rate for best DVI
performance. The DVI can operate even if the transmission rate is not constant. However,
the DVI may not be able to honor virtual circuit bandwidth reservations previously
granted if the transmission rate suddenly decreases.

* The DVI can tolerate bit errors (not bit loss). It should perform well except in the presence
of severe burst errors. In that circumstance, because of the small number of check bits
used to detect cell and message header errors, undetected errors may occur. For a UHF
SATCOM channel that provides ~10° ber, the DVI will work efﬁc1ent1y and well. It
should also work well over an HF ground wave channel at ~10~ ber. However, a burst
error with a 50% ber will definitely generate some undetected errors. This type of condi-
tion can be detected by monitoring header error rates and is reported via DVI status mes-
sages; however, no corrective action is taken by the DVI in the current implementation.

5.3 Half Duplex Circuit Control

In the half duplex mode of operation, unless it is overridden by the PTT function of the
TVT, the DV1 s in control of link direction and will maintain a slot schedule by transmitting one

19

slot of data and then passing a token, i.e., an End-of-Transmission (EOT) message, to its DVI peer
at the opposite end of the link. If there isn’t enough data available to fill a slot, it will send a short
slot. We propose 5 seconds as the duration of a slot! for DVI operation over UHF SATCOM.

When under control of the TVT, the DVI obeys Rx On and Tx Hold commands. The Rx On
command switches the DVI from transmit to receive mode and appends an EOT message to the
end of the transmission stream. At the other end of the link, the DVI that receives the EOT will
switch from receive to transmit mode, thus reversing the link. On the other hand, the Tx Hold
command prevents the DVI from switching to receive mode regardless of whether or not it has
anything to transmit. If that is the case, the DVI will transmit dummy cells until traffic is available
for transmission or until it receives an Rx On command from the TVT. This design is summarized

in figure 8.

((stot full | no more data) & Tx Hold) | Rx On

Figure 8. DVI state machine diagram.

5.4 DVI Messages

DVI messages must support several requirements. The first is the requirement to control
the half duplex link by coordinating the transmit and receive states of the node pair that forms the
link. This coordination is accomplished via an EOT message. Figure 10 presents two primary
DVI message types: 1) an EOT message and 2) a Subchannel message. Both message types have
the same length and exactlg fit a cell. When a cell is received from the RLC, the DVI first deter-
mines if the cell is an EOT<. If not, it is processed as a Subchannel message. Of course, the possi-
bility exists that the EOT will be improperly determined. A solution for this problem is given in
section 5.6.2. If a full duplex circuit is used, the EOT is unnecessary.

1. An important parameter in determining overall system efficiency is the slot length, which is defined as the
number of bits transmitted in one direction over the half duplex circuit before the circuit is turned around.
Two channel delays are required to turn the circuit around each time a slot is sent, yielding a circuit turn-
around overhead, O, as given by: '
O, =2T./ (T+2T,)
where T, is the one way channel delay and T is the time required to transmit a slot. Thus, the way to keep
turnaround overhead small is to make the slot transmission time large. On the other hand, long slot times
reduce the responsiveness of the system by increasing the average time required to access the channel. A slot
time of 5 seconds yields a 9.09% turnaround overhead given a one way channel delay of 250 ms and seems
to be a good compromise between overhead and responsiveness.
2. The EOT message could also be a valid Subchannel message; however, the probability of generating a
Subchannel message identical to an EOT is 1/2", where » is the number of bits in an EOT message. On the
other hand, an identical match will not be required to declare a message to be an EOT since a family of bit
patterns will represent a valid EOT. Nonetheless, the family of valid EOT bit patterns is still quite small
when compared to the complete set of 2" patterns.

20

x
A A

Cell (256 bits)

|
i [EOT message |

| Subchannel message |

Figure 9. DVI peer-to-peer message format.

Secondly, DVI messages must support both a virtual circuit (VC) and a datagram (DG)
service. These are the same services that are offered by the MCA network being developed for
Phase II. The DVI and MCA have intentionally been designed to support identical services, as
much as possible, to make the transition from DVI to MCA nearly transparent and to provide a
consistent set of services at the subnetwork layer for the Phase III system. Before discussing the
design details of VC and DG message formats, a discussion of VC and DG service requirements
is in order. These requirements are presented in Table IV. An unreliable datagram service, ala
UDP, is supported. ARQ could be added to provide a reliable datagram service, but this is not
included in the Phase I DVI implementation. A message oriented virtual circuit service is imple-
mented. (See Appendix 6.1 for a discussion of virtual circuit byte streams.) The VC message ser-

Table IV: DVI/MCA Service Requirements

Service . .
Service Requirements
Type q
Datagram * no guaranteed throughput capacity

* no guaranteed low latency - messages delayed beyond a time-out
limit will be lost

* duplicate messages removed (MCA only, NA for DVI)
* messages may be lost

* messages may contain errors

* message order not preserved (MCA only, NA for DVI)

* message boundaries preserved - read and write one message at a
time (msg size < 8192 bytes)

21

Table IV: DVI/MCA Service Requirements

Service Service Requirements
Type
Virtual Cir- e guaranteed throughput capacity
cuit » guaranteed low latency (< max value) - entire message must be

received by DVI before the DVI delivers it
¢ message boundaries preserved
e message order preserved, but messages may be lost

e messages may contain bit errors

vice is much like the datagram service, except that the VC service expands the service capabilities
to include throughput, latency, and message order guarantees.1 Figure 10 defines formats for the
VC and DG subchannel messages or cells and also defines formats for VC and DG messages that
are carried in cell payloads, but are independent of cell payload boundaries. All cells have a fixed
length of 32 bytes“; however, the number of bytes allocated to the cell header and payload differ
with the cell type. DG cells use a one byte header and VC message (VCM) cells use two byte
headers. The DVI also defines a set of VC control (VCC) cells which provide in-band control for
setting up and terminating virtual circuits. The cell header parameters are defined as follows:
e Cell Type (DG | VC) - The first bit of a cell header determines the Cell Type, either Data-
gram (DG) or Virtual Circuit (VC).
Virtual Circuit Type (Msg | Cntrl) - The second bit in VC cells gives additional type infor-
mation by distinguishing the cell as a Virtual Circuit Message (VCM) cell or a Virtual Cir-

cuit Control (VCC) cell.

e Cksum - Each cell header contains a checksum that detects errors in the header (not the
cell payload). If a cell header contains an error, then the cell type is not known and cannot
be properly demultiplexed. Therefore, the cell is discarded and the contents of the cell
payload is lost. VCC cells are an exception since the checksum in a VCC cell checks both
the cell header and the cell payload.

» Header Pointer (Hdr Ptr) - DG and VCM cells carry messages via their cell payloads.
They use the Header Pointer to locate the byte within the cell payload that contains the
next message header. If a cell were never lost, the length parameter in the current message
header (different than a cell header) would facilitate locating the next message header.
However, cells will be lost. Thus, the Header Pointer guarantees that the next available
message header can always be located.

1. The reason that VC service can be characterized as similar to DG service but with more capabilities is
because the DVI multiplexes services over a single link. The Phase II MCA network, on the other hand,
requires additional architectural differences to support VC services when relaying is involved.
2. MCA uses a variation of the cell structure presented here; MCA cells are 36 bytes in length. Again, the
differences between MCA and DVI are motivated by MCA’s requirement to support relaying.

22

Datagram (DG) Cell

¢ Subchan Msg (256 bits) »
[1bit | sbits | 2bits | 248 bits |
[0=DG [HdrPr | cksum | DG Cel! Payload]
DG Messages
Cl [1oit |10t |sbits |1bit | avits [abits | 1-32 bytes |
N:T\SR% | Nun ICIass=0| Leng | ARQ=0| DG Port | Cksum] DG Payload |
ci 1 l1oit |1br | 13bits [1bit | abits |abits | 33 - 8192 bytes |
N Oa :?:IQ [Nut | class=1] Leng | ARQ=0| DG Port | Ckeum| DG Payload]
Class 0 l1bit |1oit |sbis |1bit | abits labits lgpis | 1-32bytes | sobits |
w/ARQ [Null [class=0] Leng | ARQ=1| DG Port | Cksum| Seq¢ | DG Payload |cre |
Class 1 l[1om |16t | 13bits [16it | avits |abits [8bits | 33.8192 bytes | 16bits |
Null | Class=1] Leng ARQ=1 | DG Port | Cksum| Seq# DG Payload CRC
W/ARQ [Nut |cClass=t[ten | I | cksum] l | |
Virtual Circuit Message (VCM) Cel/
e Subchan Msg (256 bits) »|
| 1bit | 1bit |3bits | 2bits | 5bits | 4bits | 240 bits |
[1=VC I 0=Msg [VC# | Seq# I Hdr Ptr I Cksum I VCM Cell Payload |
VCM Messages
[1bit | 1bit |abits |2bits | 1-16 bytes
Class 0 [Nun [Class=0 [Leng | Cksum | VCM Payload
[1bit |1bit |tobits | 4bits | 17 - 1024 bytes
Class 1 [Nun Jclass=1 | Leng | cksum | VCM Payload
Virtual Circuit Control (VCC) Cell
e Subchan Msg (256 bits) »|
[1bit | 1bit | 3bits | 3bits | 248 bits |
[1=vC [1=Cntn | CntriType| vC# | VCC Cell Payload & Cksum]

Figure 10. DVI datagram and virtual circuit cell and message formats.

23

Virtual Circuit Number (VC#) - In order to support simultaneous virtual circuits, a Virtual
Circuit Number is used to differentiate up to 8 virtual circuits. The VC# is carried by the
cell header rather than by the VC message header contained in the cell payload because
the DVI controls the allocation of VC capacities by controlling the number of VCM cells
transmitted per unit time. This scheme is manageable because all cells are the same length.
If, on the other hand, we attempted the multiplexing of several virtual circuits at the VC
message level instead of the cell level, control of capacity allocated to each virtual circuit
would be more difficult because the potential variations in VC message sizes are con-
trolled by the users of VCM services rather than the DVL

CntrilType - Virtual circuit control cells are further categorized by the 3 bit CntrlType.
Table V describes the various VCC cells.

Table V: Types of Virtual Circuit Control Cells

CntriType | Cell Name Function

0 veSetup This cell sends virtual circuit setup request parameters
from DVI initiating the call to DVI receiving the call.

1 vcSetupCont | This cell sends additional setup parameters provided by
DVI client originating the call.

2 veSetupRply | This cell is used to reply to the virtual circuit set up
request, indicating acceptance or denial of the request.

3 vcTerminate | This cell is used by either DVI to terminate a virtual cir-
cuit.

4 vxRxOn This cell is not sent over-the-air. It is used when operating

in half duplex mode as a flag in a virtual circuit’s trans-
mission stream to switch from transmit to receive. This
insures that the DVI commands the RLC to switch the
transceiver when the last cell queued for transmission has
been sent.

The DG cell format in figure 10 is followed by formats for four types of DG messages.

The following parameters are supported by the DG message header:

Null - Every valid message begins with a Null (0 bit) to distinguish it from a dummy mes-
sage.

Class - The Class indicator supports a short (Class 0) and a long (Class 1) datagram. Class
1 requires an additional byte of length information in the DG message header.

Leng - The Length parameter specifies the length of the DG message payload (not the
length of the datagram itself) and is given as the payload length minus 1.

ARQ - The ARQ bit specifies whether or not a Seq# is added to the header and a Cksum is
added to check the DG payload. The ARQ bit anticipates eventual implementation of an

24

ARQ scheme.

* DG Port - The DG Port number provides the capability to support up to 16 datagram ser-
vice ports within the DVI. If ARQ is implemented, Port O will be used to handle acknowl-
edgments, leaving 15 ports to service DVI users.

* Cksum - The checksum detects errors in the DG message header. If the header contains an
error, the entire datagram will be discarded.

* Seg# - Sequence numbers will be required by a message level ARQ scheme.

* CRC - A cyclical redundancy checksum is used for the DG payload in order to implement
an ARQ scheme.

VC cells carry two kinds of VC messages, as shown in figure 10. The Class 0 VC message
uses a one byte header while the Class 1 message uses a two byte header. VC messages are similar
to DG messages, except that VC messages do not use an ARQ bit or a DG port number. Virtual
circuits cannot meet requirements for latency and capacity if they also attempt to guarantee reli-
ability via an ARQ scheme. Therefore, the ARQ bit is not needed. Also, since VC cell headers
specify a VC#, a port number is not needed in the VC message header.

5.5 DVI Service Interface

As described in Table IV, the DVI supports two basic types of service, a datagram and a
virtual circuit service. In this section we describe the Phase I interface design by which these basic
services and a supplemental service for half duplex voice are accessed. For Phases II and III this
design has been slightly modified and extended. It is called the Subnetwork Provider Interface
(SNPI) and is documented in [3]. A brief overview of the SNPI is provided in section 6.2.

5.5.1 DVI Server Access Via TCP

Clients wishing to access DVI services must first establish a connection to the DVI via a
TCP socket. The actions of the client are as follows:
* create a stream socket

e connect to the server via a call to connect()

The DVI in its roll as server must perform the following actions:
* create a stream socket

* bind the socket to a well known port

* create a connection request queue

* listen for a connection

* accept a connection and spawn a task to service the connection

Once the connection is established, TCP provides a reliable, full duplex, byte stream ser-
vice. Later subsections (5.5.3 through 5.5.9) describe messages that are passed back and forth
between client (i.e., the DVI user) and server (i.e., the DVI) via the TCP connection to manage the
DVI service. Since TCP is a stream service, it transports information in units of bytes, not mes-
sages. Thus, both client and server need to support a protocol to identify message boundaries. The
protocol used in the DVI client/server message set that follows is to give the message length at the
same location in every message. Then, the length can be decoded to locate the end of the message

25

and, subsequently, the beginning of the following message and its length. Before discussing cli-
ent/server messages, section 5.5.2 gives additional discussion related the use of TCP connections
to provide client access to the DVI server.

5.5.2 DVl as a “TCP Bridge”

A pair of DVIs communicating with each other over a link create a “TCP bridge” for the
client processes that they are serving. Figure 11 illustrates the “TCP bridge” concept. In order to

User User
User User
TCP/TP DG & VC Services TCP/IP
User Ethernet bvi RF Link bvi Ethernet User

Figure 11. Phase I configuration using a pair of DVIs acting as a “TCP bridge.”

communicate with a peer user, a local user establishes a TCP connection with the local DVI. The
local and remote DVIs use their own cell multiplexing technique to transport end-to-end user
data. At the remote end a TCP connection is again used to deliver the data to the remote user. This
is the design implemented for Phase 1. Phases II and III modify this approach so that a user (i.e.,
the Communication Server) does not use the MCA network or the DVI link as a TCP bridge.
Rather, the DVI and MCA datagram and virtual circuit services are used to transport TCP/IP and
UDP/IP packets across RF links and networks. Thus, TCP (and UDP) connections will be formed
not between a user and a DVI, but directly between users. This approach is known as “tunneling”
and is illustrated in figure 12. In this figure, the Communication Server (CS) acts as a gateway/
router. IP packets that must be routed over RF links or networks are packed into DG or VC sub-
network layer messages as appropriate and sent via DG or VC services.

(TCPIUDP)/IP
User User

DG & VC Services|

U MCA
ser / RF Network MCA \ / User
DG & VC Services|

User ¢ premet] €5 [Snpl PV RELink | PVISnpl © [“Ehernet| V%€

Gateway Gateway

Figure 12. Phase III configuration showing a pair of CS gateways “tunneling” IP via
DVI and MCA transport services.

26

5.5.3 Client Registration

Upon establishing a TCP connection with the DVI server, a client must register for service
by sending its user id. The purpose in providing a registration request in addition to a service
request (see section 5.5.4) is to enable the DVI to deliver datagrams or VC service notifications
that it has received for a passive client, i.e., a client that is not currently engaged in using a ser-
vice. In essence, client registration makes the client’s presence known to the DVI and enables the
DVI to associate a particular client with a particular TCP socket. Client registration is handled by
the messages given in Table VII.

Table VI: Messages for Client Registration

Mlszrssege Sent By | Parameter Names & Values
rgsReq Client e Userid: ARQ,TT1, TT2,..., TT15
rgsOK Server None
rgsFail Server ¢ Reason: BadUid | UidInUse | TooManyClnts

5.5.4 Opening and Closing a DVI Service

Opening and closing DVI services are handled by the messages given in Table VII. The
dgSvcReq specifies the type of datagram service (polled or unpolled) being requested. The vcS-
vcReq specifies the type of VC service being requested as well as additional parameters that spec-
ify precedence, rate, average VC message size (to aid the DVI in determining the amount of
actual communication capacity required to support the rate), and a destination address. The prece-
dence and destination address are supplied independently for each datagram that is sent, but only
once when a virtual circuit is set up. The notification messages, svcNtfy and svcTermNtfy, are
delivered by the remote DVI to a remote user callee to indicate that virtual circuit service has been
set up or terminated by the caller. The svcTerm message is used by a caller or a callee to terminate
VC service. Finally, the svcGrntd and sveNotGrntd messages are sent by the DVI server to the cli-
ent making a service request to indicate the status of the request. If the DVI honors the service
request, a sveGrntd message is returned to the client along with a Service Id. The Service Id must
be included by the client in all subsequent commands related to that service. The sveNotGrntd
message indicates to the client that service was not granted. The reason that service was not
granted is given in the first return parameter. If the svcNotGrntd message is returned in response
to a veSvcRegq, two additional parameters are supplied - the maximum capacity available to sup-
port the VC service at the requested precedence and the minimum precedence level, if it exists,
that could be used to acquire the requested capacity. With this information, the client may negoti-
ate with the DVI by formulating a new service request that the DVI can honor.

5.5.5 Datagram Service

Use of the message set given in Table VII for Datagram service presupposes that a client
has successfully obtained the service from the DVI via a dgSvcReq / sveGrntd message exchange.
Once datagram service is established, the client may send either the dgSnd message to the DVI, in

27

Table VII: Messages for Opening and Closing DVI Services

Message
Name

Sent By

Parameter Names & Values

dgSvcReq

Client

Service Mode: Polled | Unpolled

vcSveReq

Client

Service Type: VCsmplx | VCswsmplx | VCdplx |

VCswdplx

Precedence: Routine | Immediate | Priority | Flash
| FlashOverride

Rate: requested capacity in bps

Average VC message size in bytes client expects

to use

Destination Address (User Id + Node Id)

svcNtfy

Server

Service Id

Service Type

Precedence

Rate: capacity in bps that is reserved for this ser-
vice

Average VC message size in bytes that is the basis
of the capacity reservation

Source Address (user & node that initiated ser-
vice)

svcTerm

Client

Service Id

svcTerm-

Ntfy

Server

Service 1d

sveGrntd

Server

Service Id

sveNtGrntd

Server

Reason: BadSvcType | RateTooHigh | NotRgstrd |
TooManySvcs | TooManyVcens | CalleeBadSve-

Type | CalleeRateTooHigh | CalleeNotRgstrd |
CalleeTooManySvcs | CalleeTooManyVcns |
Other

Maximum capacity DVI can provide at requested
precedence level

Minimum precedence required to support
requested rate

28

order transmit datagrams, or the svcTerm message, in order to close the datagram service. The cli-
ent may also close the TCP connection to terminate a service. The DVI server may send three
types of messages to the client while datagram service is in operation. The dgRcv message is used
to deliver datagrams from a remote peer to the local datagram client. The dgPoll message is used
only when the client has requested a polled mode for sending datagrams. The dgStatus message is
returned to the client after every dgSnd to indicate the status of the polled and unpolled services.

Table VIII: Messages for Managing DVI Datagram Services

Message

Sent By Parameter Names & Values
Name

dgSnd Client e Service Id

* Destination Address (Node Id + User Id)
* Length of data in bytes

* 1-8192 bytes of data

* Precedence of data: default Routine

dgRcv

Server

Length of data in bytes
1 - 8192 bytes of data

dgPoll

Server

Service Id

dgStatus

Server

Status of most recent dgSnd: Ok | BadSvcld |

MsgTooLarge | MsgQueueFull | BadParameters |
MsgBufferLocked (polled service) | SndFailure

5.5.6 Virtual Circuit Service

Since virtual circuit service is message oriented, it is handled in a fashion similar to the
datagram service, as shown in Table VII. The differences are that virtual circuit service does not
support a polling mechanism and that a virtual circuit enforces the allocated circuit capacity. The
DVI currently implements half-duplex (VCswsmplx), full-duplex (VCdplx), and simplex (VCsm-
plx) virtual circuit services. The TVT designed for Phase I does not support the call management
protocols described in section 4.0. Rather, full-duplex service is obtained by manually starting
voice source and sink processes on a pair of TVTs which then establish a pair of simplex virtual
circuits, one in each direction. Subsequent versions of the TVT will implement call management
protocols.

5.5.7 Half Duplex Voice Service

Half duplex voice service is handled as a special case because additional TVT/DVI con-
trol is needed to reverse the direction of the half duplex link. Half duplex voice uses the message

29

Table IX: Messages for Managing DVI Virtual Circuit Services

Message Sent By Parameter Names & Values
Name
veSnd Client » Service Id
* Length of data in bytes
e 1-1024 bytes of data
vcRev Server * Length of data in bytes
e 1-1024 bytes of data
veStatus Server * VcSnd: Ok | BadSvcld | MsgTooLarge | Capaci-
tyExcd | UrateExcd | InRcvingState (half-duplex)
| Preempted | SndFailure

set provided above in Table VII for sending a receiving data, i.e., TVIT/TVT messages. It uses the
message set given in Table VII for half duplex voice control of the DVL.

Table X: Messages for Half Duplex Voice Control of a DVI

Ml\?::ege Sent By Parameter Names & Values
hdvRxOn Client * Service Id
hdvTxHold | Client * Serviceld
hdvXoff Server * Service Id
hdvXon Server e ServiceId
hdvTxOK Server * Service Id

5.5.8 Flush

A dviflush message is sent by a client to the DVI server to force transmission of the last
datagram or virtual circuit message. Since the current DVI implementation performs automatic
flushing, the dviflush message is not needed. However, the DVI could be easily reconfigured to
limit automatic flushing in order to conserve bandwidth and the dviflush command would then
become useful.

5.5.9 DVI Status

There are two ways to obtain DVI status information. The first is via the vxWorks rlogin
shell and the second is by using a client process that sends statusReq and statusReset messages to
the DVI and receives statusRply, statusDgSvc and statusVcSvc messages in return (see Table VII).
The dviHelp command prints the message shown in figure 13 and lists other commands that may

30

Table XI: Flush Message

Message Sent By Parameter Names & Values
Name
dviflush Client * Service Id

be used to print DVI statistical variables, reset statistical variables to zero, or turn message tracing
on and off. Two types of message tracing are available, one that displays messages traversing the

dviHelp

pt

pdvi
pcell
pm
pu
ps
Pq

rdvi
rcell
rmsg
ru
rs

rq

tion
t1off
t2o0n
t2off

prlnt thls msg - Time since startup or last reset

print elapsed time & measured transmission rate
Current transmission rate In bps 7/

print dvi stats ———— Printail stats

print cell stats only

print msg stats only

print user stats only

print service stats only

print vc cellQ stats only

reset dvi stats

reset cell stats only

reset msg stats only

reset user stats only (not implemented)
reset service stats only (not implemented)
reset vc cellQ stats only

turn client/server msg tracing on
turn client/server msg tracing off
turn RLC msg tracing on
turn RLC msg tracing off

Figure 13. Commands available from VxWorks rlogin shell for displaying/resetting sta-

tistical variables and turning tracing on/off.

client/server interface and another that displays messages traversing the DVI/RLC interface. The
print commands give the following information about DVI performance:
* pcell

0

S OO

xmtCellCnt & rcvCellCnt - total number of cells sent and received (including dummy

cells)

xmtDmyCellCnt & revDmyCellCnt - total number of dummy cells sent and received
dgXmtCellCnt & dgRcvXmtCellCnt - total number of DG cells sent and received

vc[0-7]1XmtCellCnt & vc[0-7]RcvCellCnt - total number of VC cells sent and received
for a given virtual circuit number

31

0
0

pm

0
0

0
0
pu
0
0
0

ps -

0
0
0
0

pPq
Y

0

cellHdrErrCnt - number of cell header errors detected
ricResetCnt - number of times RLC was reset because of total garbage being received

dgXmtMsgCnt & dgRcvMsgCnt - total number of datagrams sent and received

veXmtMsgCnt[0-7] & vcRcvMsgCnt[0-7] - total number of virtual circuit messages
sent and received for each virtual circuit number

dgMsgHdrErrCnt - total number of errors detected in DG message headers
veMsgHdrErmrCnt - total number of errors detected in VC message headers

- following information provided for each registered user

USER - integer value of the uid for each user registered with the DVI

SOCKET - value of the TCP socket file descriptor that connects the DVI to the user
SIDs - list of service identifiers for services granted to each user

following information provided for each user/service

uid

service type

for DG service - polled or unpolled

for VC service - priority, VCN, requested rate and average message size, current sam-
ple of user’s input rate integrated over sliding window size (default = 5s), maximum
and average user input rate, capacity allocated for the VC, actual capacity used by VC
(may exceed allocated capacity when VC cells are flushed)

VC cell queue statistics for each VCN - average queue size, maximum queue size, cur-
rent queue size, VC cell pool size

DG cell queue statistics - average queue size, maximum queue size, current queue
size, DG cell pool size

Table XTI: Messages for Requesting and Sending DVI Status

Message
Name

Sent By Parameter Names & Values

statusReq Client » StatReqType: UnpollOpr (client requests unpolled

operation - DVI will periodically send stats to cli-
ent) | StopUnpollOpr (client stops unpolled opera-
tion) | PollAll (Poll for all stats: DVI, VC, & DG)
| PollDvi (Poll for DVI stats) | PollDg (Poll for
DG service stats) | PollVc (Poll for VC service
stats)

32

Table XII: Messages for Requesting and Sending DVI Status

Message Sent By Parameter Names & Values
Name

statusRply | Server * struct statusRprt

statusDgSvc | Server e struct statusRprtDgSvc

statusVcSvc | Server e struct statusRprtVcSve

statusReset | Client * StatReqType: ResetAll (Reset for all stats: DVI,
VC, & DG) | ResetDvi (Reset for DVI stats) |
ResetSve (Reset for service stats)

5.6 DVI Operation

The DVI design specifies two phases of operation - an initialization phase and an opera-
tional phase. In full duplex mode, the Initialization Phase consists of creating and binding a TCP
socket as well as spawning the Multiplexer and Demultiplexer tasks. In half duplex mode the
same initialization occurs plus initialization for the half duplex link. Figure 14 gives a flow chart
of DVI operation as it relates specifically to initializing and maintaining the link in half duplex
mode. The details of the Operational Phase will be further described in succeeding figures.

Initialization Phase Operational Phase
. While the DVl is in Data Only

Nfge Y:s :)S(g::doé‘OT . é;nr:do'l"l:-affic Mode, it will automatically tum the

«Rcv On : g:c%ﬁm' half dux circuit around after trans-

mitting for one slot time. However,

No when the DVI is handling half dux

voice, the direction of the circuit is

«Rev On controlled by the TVT.
Wait
for

EOT

Figure 14. Flow chart of DVI half duplex operation.

5.6.1 Initialization Phase

Each DVI has a unique node number assigned to it. Node 1 is the first node to transmit
during the initialization phase. It transmits an EOT and waits for a response from its DVI peer at
the opposite end of the link. If it doesn’t hear an EOT in response, it continues to repeat this pro-
cedure until it does. Node 2 doesn’t transmit until it hears an EOT from Node 1. When it does it

33

can send its first slot of data, ending with an EOT. Node 1 then sends its first slot of data, termi-
nated with an EOT, and so on.

5.6.2 Misinterpreted EOTs

When an EOT is misinterpreted, the half duplex link will be lost. If an EOT is sent and the
receiver misses it, the sender will switch to receive mode while the receiver remains in receive
mode, leaving both nodes in receive mode. On the other hand, if a Subchannel message is falsely
interpreted as an EOT message, the receiving node will switch to transmit mode while the trans-
mitting node remains in transmit mode. Thus, both nodes are transmitting; neither are receiving.
In the first case, i.e., both nodes receiving, each node will return to the Initialization Phase after
waiting for a time-out period and not receiving a transmission. The second case, i.e., both nodes
transmitting, eventually evolves to the first case if we assume that a node, having missed the
modem synchronization preamble, cannot get into proper byte sync with the incoming data stream
even if it could receive it. If this assumption is false, then one node switches to receiving mode,
gets in step with the received byte stream, and we again have a link. Thus, half duplex link syn-
chronization can be recovered after an EOT failure.

5.6.3 Operational Phase (Cell Packing, Multiplexing, & Data/Voice Integration)

The functions of the Operational Phase are the following:
* manage the service interface provided to DVI clients

* manage datagram and virtual circuit services

* pack and multiplex the stream of cells to be transmitted

» demultiplex and unpack cells that have been received

» deliver DG and VC messages to proper recipients

* manage half duplex circuit switching (if in half duplex mode)

* manage the interface to the RLC
The functions just listed, with the exception the cell packing and multiplexing schemes, are dis-
cussed in other sections of the documentation. Therefore, cell packing and multiplexing are
described here and it is here that data/voice (i.e., datagram and virtual circuit) integration actually
takes place.

Voice and data are multiplexed onto the DVI’s output stream by interleaving VC and DG
cells. By using 3 bits to specify a VC#, up to eight unique VC cell streams can be multiplexed
over a DVI link. Since DG cells do not specify a DG#, the DVI supports only one DG cell stream.
However, the DG messages that are packed within the DG cell stream contain a 4 bit DVI Port
number which allows multiplexing of up to 16 DG subchannels over the one DG cell stream. Fig-
ure 15 illustrates the multiplexing of individual, homogeneous cell streams to form a heteroge-
neous output stream. Picturing VC and DG cells as streams is not meant to imply anything about
buffering or queuing of cells at the source. However, the concept of individual streams being
interleaved into a multiplexed output stream is useful in understanding how cell payloads are
packed, as shown in Figure 16.

Figure 16 applies equally well to the creation of VC message (VCM) or DG cells. In
either case, messages sent by a client are first encapsulated as a VCM or a DG by attaching the

34

Cell Header
Cell Payload

Figure 15. Conceptual view of multiplexed cell streams to form a DVI output stream.

Client Messages

|] N || [J
VC or DG Messages %ﬁdm;ﬁ siz:(;)ened by

VCM or DG Cell Stream

Time —

Figure 16. Packing of Virtual Circuit Message and/or Datagram Cells

appropriate VCM or DG header. Then the DVI contiguously packs the VCMs or DGs into cell
payloads. When the DVI is heavily loaded, a cell payload is completely filled before it is placed
into a FIFO queue (one queue per individual cell stream) to await insertion into the output stream
by the multiplexer. On the other hand, if DVI traffic loading is light, the DVI will use the excess
capacity to automatically flush a partially filled cell in order to expedite the cell’s transmission
when additional data is not yet available to fully pack the cell. This process is further elaborated in
figure 17.

The Multiplexer Task maintains a FIFO queue for each cell stream, i.e., one for the DG
cell stream and one for each of the eight possible VCM cell streams. Based on the availability of
cells in each FIFO queue, the relative priority of each stream, and, in the case of VCM streams,
the capacity requirements, the Multiplexer Task determines the order in which cells are dequeued
and inserted into the output stream. The protocol that controls cell multiplexing is shown in figure
18.

The cell multiplexing control loop operates on the service ports that have been created and
placed in the Service Port Queue. One service port is created to handle all datagrams, one service
port is created to handle all DVI peer-to-peer commands, and service ports are dynamically cre-
ated to handle virtual circuits.

Every service port has a FIFO cell queue and a capacity bound, i.e., a limit that is used to
control the transmission capacity allocated to the service port. The DG Service Port’s capacity
bound is always set to zero, meaning that no capacity is reserved for datagram service. The CMD
Service Port’s capacity bound is set to infinity, meaning that DVI peer-to-peer commands will get

35

Client l

|—"——| Client Message

DVI
Server
Task

S —

Message Header.

of cell
Cell Header — :/

¢ Message Framing

/E——:I Unfilled part

Cell Packing

.: Completely filled cells
B

Multiplexer
Task

FIFO Cell Queue

Figure 17. Cell creation and queuing.

Partially
h Cell
ggllfd Queue

Capacity

Bound) 7
(0 for DG) \ N

Transmission
Rate

(capaci
reservation
for VC

Virtual Circuit
Setup &
Termination
Commands

A

\ /

N

bllald i

(= forCmd) —1

Service Cell Multiplexing
Port Control Loop
Queue
Level O:
9
Port
Cn .
Port Level 1:
— Cell Q Not Empty
e Level 2:
Port Cell to Flush
C1
ort Level 3:
Cmd Send Dummy Cell
Port

\

Cell Not Sent

\

Cell Q Not Empty &
Capacity Not Exceeded

)
)

NVIRY

Transmitted Cell Stream

Figure 18. Multiplexing cells to create a transmitted cell stream.

36

Cell Sent

all the capacity that the transmission system can provide, if needed. In actuality, DVI commands
use only a very small fraction of the transmission capacity. VC Service Port’s have capacity
bounds that are set in accordance with user requests for capacity that have been honored by the
DVIL

In addition, the DG and VC Service Ports may each have a partially filled cell that is in the
process of being packed and has not yet been moved to the cell queue. It is moved to the cell
queue when packing is completed or when the service port’s flush() function is called. Also, the
VC Service Port measures the user’s transmission rate.

The service port entities just described are used by the cell multiplexing control loop to
select the next cell for transmission and move it to the transmitted cell stream. The loop continu-
ally traverses the linked list of service ports in the Service Port Queue in an attempt to find a cell
that meets the criterion for transmission. The search begins at Level 0, which uses the most
restrictive test to determine if a cell can be sent. At Level 0, the cell queue must have a cell avail-
able to send and the capacity bound must not be exceeded if the cell is transmitted. The entire
linked list of service ports is traversed using the Level O test. One cell is transmitted in turn from
each service port that meets the Level O test criterion. If no cell is found that can be sent at Level
0, the level is incremented and the Service Port Queue is again traversed. At Level 1, the test cri-
terion is relaxed so that a service port may send a cell if its cell queue contains a cell regardless of
the port’s capacity bound. If the entire Service Port Queue is traversed at Level 1 without finding
a cell to send, the level is again incremented. At Level 2, partially filled cells are flushed and at
Level 3 a dummy cell is sent. If traversal of the list at a given level results in the transmission of at
least one cell, the level is decreased by L.

The end result of the multiplexing protocol just described is that cells are removed and
transmitted from eligible service ports in a round-robin fashion. The CMD Service Port and VC
Service Ports that are not exceeding their capacity reservations are serviced first. The DG Service
Port can only be serviced at Level 1 or higher, i.e., after the CMD and VC ports have received
their allocated capacity, if needed. If VC ports don’t use all the capacity they have been granted,
then that unused capacity is automatically transferred to support the DG Service Port. Also, auto-
matic flushing is performed as capacity permits.

5.7 DVI Software Design

The DVI software design takes advantage of the VxWorks multi-tasking operating system
by using VxWorks tasks, sockets, and mailboxes. A brief description of some pertinent features of
these VxWorks building blocks follows: ’

* Task - A VxWorks task is an independent program unit that has its own stack and program
counter. The multi-tasking kernel creates an environment that gives the appearance of
tasks executing in parallel when, in fact, at the kernel level only one task at a time is exe-
cuted under control of the kernel’s scheduler. The default protocol is preemptive priority-
based scheduling, though round-robin scheduling may be selected as an alternative. One
thing that a task does not have as part of its context is its own private address space. This
is one of the ways VxWorks differs from Unix.

* Socket - VxWorks sockets provide a device driver type interface to either TCP or UDP
and behave like their Unix counterparts. TCP provides a stream oriented connection trans-

37

port service. UDP provides a connectionless datagram transport service. The DVI uses
stream sockets which, conceptually, are used no differently than the driver interface to an
RS-232 port once a connection is established. The practical difference between the two is
that sockets may create new connections under software control; RS-232 ports require
manual recabling. A socket’s blocking behavior is particularly critical to DVI design. A
stream socket will block on a read to await data if none is available at the time the read
command is issued. On a write, the socket will not block although it may return with an
error or may write only part of the data if the task or process at the receiving end is not
reading the data fast enough.

* Message Queue (i.e., Mailbox) - A mailbox is simply a FIFO queue provided by VxWorks
to facilitate intratask communication. msgQSend() and msgQReceive() both take a time-
out parameter that permits control of the blocking characteristics for both writes and reads.

Figure 19 presents a DVI software design using the VxWorks building blocks just
described. DVImain creates a connection server socket, binds the socket to a well known port, and
then listens for connections. When a connection is accepted, the connection server socket creates
a stream socket to support the connection while DVImain spawns a DVIserver task to manage the
server interface, allocate service to the client, and create a cell stream that carries the user’s traffic.
Messages sent by the client drive the execution of a DVIserver task, i.e., the task blocks on a read
of the stream socket that it is servicing. Outputs of a DVIserver are the cell stream sent to the
Mutltiplexer or messages sent to the client via the stream socket in support of the client/server
interface.

DVImain also spawns the Multiplexer and Demultiplexer Tasks. The Multiplexer com-
bines several homogeneous cell stream inputs into a single heterogeneous cell stream output, as
previously described in section 5.6.3. In contrast to a DVIserver task, which is driven by its client,
the Multiplexer task is driven by the RLC via the RLCmbox. The buffer capacity of the RLCm-
box is set to a small value, e.g., two messages in the present implementation. Each message is 33
bytes in length, a 32 byte cell plus one byte of header for RLC control. By blocking the Multi-
plexer task processing loop on the write to the RLCmbox, the RLC can pace the execution of the
Multiplexer task’s decision making code. The alternative, i.e., allocating a larger buffer capacity
to the RLCmbox, would allow a client (or clients) to temporarily exceed a sustainable transmis-
sion rate until the RLCmbox is filled. The problem in this approach is that the software making
multiplexing decisions will not perform correctly if it is driven by a client generating a traffic
burst. In that case, the only cell stream with cells available for multiplexing onto the output cell
stream at the time multiplexing decisions are made, is the cell stream belonging to client generat-
ing the burst. Not permitting the RLCmbox to buffer the output cell stream avoids this potential
problem.

Demultiplexing on the receive side of the DVI is handled by the Demultiplexer Task.
Decoupling the transmit and receive sides of the DVI is not required for supporting half duplex
communication, but it is essential for handling full duplex operation. Otherwise, a cell would
have to be transmitted in order for a cell to be received and vice versa (or the select() function
could be used). Having demultiplexed the stream of cells received via the RLC, the Demultiplexer
must unpack the VC, DG, or CMD messages embedded in the demultiplexed cell stream and

38

(Workstatlon

Workstation Workstation 'TU
TU
™V TDT
- Connection " »
Protocol
L /
N
e S — 1
/’ Connection SerVer 3 &tmam&nlik_etj
| Stream Socket | Socket Stream Socket
I o DVVTDT
bpviyTtvr — : Messages
Messages) DVimain S,
¢ §
v
DViserver DViserver
Task Task
VC DG Cells < —
VCM Cells — g_o—rH N
2 TVI/TVT . TDT/TDT
p‘c’,c Msgs Revd — Msgs Revd
Control — Ve & DVU/TVT CMDs
Po
Multipl /Controll %%!l
ultiplexer/Controller
P Taek Demultlﬁlexer
A
g‘gg::rg,e" Stream —— ™ Recvd Cell Stream
RLCmbox RLCIF (DVimbox)
RLC MVME167

J

\

Figure 19. DVI software design.

39

deliver them to the proper recipient. When a CMD message is received, e.g., a vcSetup command,
the Demultiplexer Task generates a vcSetupRply message that is passed to the Multiplexer Task
(via the CMD Service Port) for transmission to the remote DVI that initiated virtual circuit setup.
VC or DG messages that are received must be delivered to the recipient designated by the data-

gram’s destination address or, in the case of VC traffic, the destination address that was given by
the vcSetup message when the virtual circuit was established.

5.8 DVI Virtual Circuit Management

The DVI virtual circuit management protocols are the final element of the DVI design to
be discussed in this document. The design presented here is the design implemented for the Phase
I ATD system. For Phases II and I, the virtual circuit management protocols have been modified
to support the Subnetwork Provider Interface (SNPI) that the CS uses to acquire services from the
DVI and the MCA network (see figures 3 and 11). The key difference between the protocols is
that the Phase I design creates virtual circuit connections between DVIs whereas the SNPI based
protocols create connections between users. This difference is not as drastic as it may sound.
Stated another way, the Phase I design sets up a circuit between DVIs based on the caller’s request
and then notifies the callee that a virtual circuit has been established. The callee then may decide
to answer the call by using the virtual circuit thus established. In order to support the SNPI for
Phases II and III, virtual circuit setup has been modified to pass the VC setup request to the user
prior to establishing the virtual circuit. Thus, the callee must answer the call before the DVIs actu-
ally sets up the virtual circuit (see [3] and section 6.3).

Two basic types of virtual circuit service are supported in the Phase I DVI implementation
- simplex and full duplex (i.e., VCsmplx and VCdplx). Figure 20 shows the simplex virtual circuit
management protocol. When a caller issues a veSvcReq to the local DVI requesting simplex vir-
tual circuit service, the local DVI determines if it has a VCN available and can allocate enough
capacity to honor the request. If it can, it returns a sveGrntd message to the caller and transmits a
vcSetup message to the remote DVI. The remote DVI then notifies the callee that a simplex virtual
circuit has been set up. The svcNify message also passes the caller’s address and the type, priority,
and capacity of the virtual circuit to the callee. Once service is granted, the callee may use veSnd
messages to supply data to the DVI for transmission. The DVI acknowledges every veSnd com-
mand that it receives with a veStarus message that tells the caller the status of the most recent
veSnd. The callee may terminate the virtual circuit by sending a svcTerm command to the DVI or
by simply closing the TCP connection. In either case, a veTerminate message is propagated to the
remote DVI which, in turn, sends a svcTermNtfy message to the callee.

Figure 21 illustrates full duplex virtual circuit management. In many ways it resembles the
simplex protocol except that both the caller and the callee may send data simultaneously and set-
ting up the full duplex circuit requires an extra step. When the remote DVI receives the vcSetup
message, it must have a VCN available and enough capacity to support a virtual circuit back to the
caller. If it does, it sends a vcSetupRply back to the DVI where the call originated and notifies the
callee that full duplex virtual circuit service has been established. Either user, i.e., caller or callee,
may terminate the full duplex circuit.

40

Caller Local DVI Remote DVI Callee

. Setup vcSvcReq (VCsmplx) vcSetup
sveGrntd
\ svcNtty
veSnd vcMsg
vcStatus vcRev
Operation veSnd vcMsg
vcStatus
. vcRev
[J
_ []
Termination —(svcTerm vcTerminate
\ svcTermNtfy

Figure 20. Setup, operation, and termination of a simplex virtual circuit.

Caller Local DVI Remote DVI Callee
Setup veSveReq (VCdplx) veSetup
‘—’—_" veSetupRply
sveGmtd svcNtfy
veSnd vcMsg
vcStatus vcRev
Operation vcMsg veSnd
vcRev Y '<b vcStatus
[]
®
Termination —(sveTerm veTerminate
T svcTermNtfy

Figure 21. Setup, operation, and termination of a full duplex virtual circuit.

41

6.0 Appendix

6.1 Virtual Circuit Stream Service

A Virtual Circuit Stream (VCS) service has been designed as a companion to the Virtual
Circuit Message (VCM) service. However, a decision has been made not to include VCS service
in the Phase I implementation because VCS service will not be offered by the Phase II system.
Providing a service in Phase I that is not offered in Phase II would negatively impact any user of
that service when transitioning to the Phase II environment. The requirements for a VCS service
are given in Table XIII and the message format portion of the VCS design is presented in figure
22. VC stream service, just like the DG and VC message services, does not guarantee byte reli-
ability, but it does provide byte synchronization, i.e., it guarantees the number of bytes input to the
virtual circuit stream (VCS) will be the same as the number of bytes output by the VCS. VCS

e Subchan Msg (256 bits) >
|1bit | 1bit | 3bits |3 bits) 5 bits|27 bits| 8 bits | 208 bits |

|1=VC|1=Cntrl[6=Strm| VC# |Pad Ptr| Byte #Cksum| VCS Cell Payload |

Figure 22. Cell format for a virtual circuit stream.

Table XIII: Virtual Circuit Stream Service Requirements

Service Type Service Requirements
Virtual Circuit * guaranteed throughput capacity
Stream guaranteed low latency (< max value)

* circuit is flushed automatically

* byte synchronization maintained (both number and order) - A
null byte is inserted into the output byte stream for each byte lost
by the VCS.

* bytes may contain bit errors

cells use six byte headers, which are lengthy compared to the one byte DG and the two byte VCM
headers. On the other hand, VCS payloads don’t carry additional message header overhead as do
the VCM and DG cells.

42

6.2 Subnetwork Provider Interface (SNPI) Overview

The SNPI is documented in [3]. The intent here is to give a brief overview of the SNPI for
the convenience of the reader who may not have a copy of [3] and to update the original design
information given in section 5.5.

Table XIV: SNPI Messages

Message Type SNPI Nomenclature Sender->Receiver Function

rgsReq SN_RGS_REQ client->DVI client registers with server

rgsOK SN_RGS_OK DVI->client registration successful

rgsFail SN_RGS_FAIL DVI->client registration failed

dgSvcReq SN_DG_SVC_REQ client->DVI client requests DG service

vcSveReq SN_VC_SVC_REQ client->DVI client requests VC service

svcNtfy SN_SVC_IND DVI->client DVI notifies client that VC
service has been set up to
handle incoming call

svcRes SN_SVC_RES client->DVI client responds to
SN_SVC_IND (VC setup
call)

svcTerm SN_SVC_TERM client->DVI client terminates service

svcTermNtfy | SN_SVC_TERM_IND DVI->client DVI informs client that ser-
vice has been terminated by
remote client

sveGrntd SN_SVC_CON DVI->client DVI grants service request

sveNtGrntd SN_SVC_DEN DVI->client DVI denies service request

dgSnd SN_DG_SND client->DVI client sends datagram to DVI
for transmission

dgRcv SN_DG_RCV DVI->client DVI delivers received data-
gram to client

dgPoll SN_DG_POLL DVI->client DVI polls client for next data-

gram to send (polled service
only)

43

Table XIV: SNPI Messages

Message Type

SNPI Nomenclature

Sender->Receiver

Function

dgStatus

SN_DG_STATUS

DVI->client

DVI acknowledges result of
executing most recent dgSnd
command

veSnd

SN_VC_SND

client->DVI

client sends VC message to
DVI for transmission

vcRev

SN_VC_RCV

DVI->client

DVI delivers received VC
message to client

vcStatus

SN_VC_STATUS

DVI->client

DVI acknowledges result of
executing most recent veSnd
command

hdvRxOn

SN_RX_ON

client->DVI

client commands DVI to
switch from transmit to
receive mode

hdvTxHold

SN_TX_HOLD

client->DVI

client commands DV] to
remain in transmit mode

hdvXoff

SN_XOFF

DVI->client

DVIresponse to a hdvTxHold
that cannot be honored
because DVI is in receive
mode

hdvXon

SN_XON

DVI->client

if the DVI has issued a hdvX-
off, it will issue a hdvXon
when it returns to transmit
mode

dviflush

SN_FLUSH

client->DVI

client commands DVI to pad
and sent cell currently bein
packed :

statusReq

SN_STATUS_REQ

client->DVI

client requests status informa-
tion from DVI

statusRply

SN_STATUS_RPLY

DVI->client

DVI sends DVI status infor-
mation to client

getPhyAddr

SN_GET_PHY_ADDR

client->DVI

get the physical, or node
address, for this SC

Table XIV: SNPI Messages

Message Type SNPI Nomenclature Sender->Receiver Function
setPhyAddr SN_SET_PHY_ADDR client->DVI - | set the physical, or node
‘ address, for this SC

physAd- SN_PHY_ADDR_RPLY DVI->client response to get or set physical

drRply address

snOK SN_OK DVI->client response from SC to a num-
ber of control messages

snError SN_ERROR DVI->client sent from DVI if invalid
request was sent by client

vcRstReq SN_VC_RST_REQ client->DVI reset a VC

vcRstInd SN_VC_RST_IND DVI->client reset has occurred on VC
specified

vcRstRes SN_VC_RST_RES client->DVI client acknowledged reset of
\'[®

vcRstCon SN_VC_RST_CON DVI->client client is notified of VC reset
completion

tstReq SN_TST_REQ client->DVI send a test message

tstRply SN_TST_RPLY DVI->client test message received

xidReq SN_XID_REQ client->DVI send an XID message

xidInd SN_XID_IND DVI->client XID message received

xidRes SN_XID_RES client->DVI client response to XID mes-
sage

xidRply SN_XID_RPLY DVI->client XID reply delivered to client

6.3 Phase Il (SNPI-based) Virtual Circuit Management

SNPI-based virtual circuit management is documented in [3]. The intent here is to give a
brief overview of Phase II virtual circuit management for the convenience of the reader who may
not have a copy of [3] and to update the original design information given in section 5.8. The vir-
tual circuit setup protocols appear to be identical for simplex (VCsmplx), full duplex (VCdplx),
and half duplex (VCswdplx) services and, at the protocol levels viewed in figures 23, 24, and 25,
they are. However, at a lower level, the DVI differentiates between simplex and duplex (half or
full) services. For simplex service, a single virtual circuit subchannel (defined by its vcn) is set up

45

at the local DVI. For duplex circuits, another virtual circuit subchannel is set up at the remote DVI
to provide a return path to the local DVI.

Caller Local DVI

Remote DVI Callee
SN_VC_SVC_REQ
(VCamplx) vcSetup
Setup [T, SN_SVC_IND
veSetupRply SN_SVC_RES
SN_SVC_CON "<
_sve_col SN_OK
SN_VC_SND veMsg
SN_VC_STATUS
. SN_VC_RCV
Operation SN_VC_SND veMsg
SN_VC_STATUS . SN_VC_RCV
.
- - .
Termination SN_SVC_TERM veTerminate
SN_OK > SN_VC_TERM_IND

Figure 23. Setup, operation, and termination of a SNPI-based simplex virtual circuit.

Caller Local DVI Remote DVI Callee
SN_VC_SVC_REQ
(VCampl®) vcSetup
Setup 5 SN_SVC_IND
vcSetupRply SN_SVC_RES
SN_SVC_CON
SN_OK
SN_VC_SND veMsg
SN_VC_STATUS
O t. SN_VC_RCV
peration S — vcMsg < SN_VC_SND
Ve ° SN_VC_STATUS
[
. - .
Termination SN_SVC_TERM
vcTerminate
SN_OK SN_VC_TERM_IND

Figure 24. Setup, operation, and termination of a SNPI-based full duplex virtual circuit.

46

Caller Loca! DVI Remote DVI Callee

SN_VC_SVC_REQ
(VCswsmplx) veSetup
Setup SN_SVC_IND
vcSetupRply SN_SVC_RES
SN_SVC_CON ¢—— SN OK
SN_TX_HOLD
SN_XON >
SN_VC_SND veMsg
SN_VC_STATUS
_ - — SN_VC_RCV
eration —
Op SN_RX_ON EOT (:N‘TX“HOLD
SN_OK SN_XON
SN_VC_SND
vcMsg
SN_VC_RcV ° SN_VC_STATUS
¢
[
Termination —(SN_SVC_TERM veTerminate
SN_OK SN_VC_TERM_IND

Figure 25. Setup, operation, and termination of a SNPI-based half duplex virtual circuit.

47

